
Reinforcement Learning-Based Opportunistic
Routing for Live Video Streaming over Multi-Hop

Wireless Networks

Kexin Tang∗, Chenglin Li†, Hongkai Xiong∗, Junni Zou∗ and Pascal Frossard†
∗MIN, Shanghai Jiao Tong University, China

Email: {tkx1994-china, xionghongkai}@sjtu.edu.cn
zou-jn@cs.sjtu.edu.cn

†LTS4, EPFL, Switzerland

Email: {chenglin.li, pascal.frossard}@epfl.ch

Abstract—Real-time video services are usually delay sensitive
and have strict constraints on the transmission reliability, which
poses challenges to live video streaming over multi-hop wireless
networks, since the unpredictable packet losses and network
congestions caused by time-varying wireless channels greatly
degrade the received video quality. To address this, in this paper,
we propose a reinforcement learning (RL)-based opportunistic
routing (OR) scheme for wireless video streaming with high-
reliability and low-delay requirements. It can exploit the broad-
cast nature of the wireless shared medium and path diversity
through OR to improve the transmission reliability, and find the
low-delay paths between the source-destination pair dynamically
for video packets through the RL module embedded in each
relay node. Specifically, we design for the OR a new path-cost
metric called the expected anypath delay (EAD), to estimate the
end-to-end delay of a packet between the current relay node and
the destination. The EAD is dynamically measured and updated
over time, thereby reflecting the changes of link quality and the
congestion level at the relay node. Moreover, we utilize the ACK
message to piggyback the EAD of each relay node to its previous-
hop node. Based on the local communication of the EADs from
the neighbors, each node in the network can iteratively and
independently run the RL module to update its own EAD value.
Then, the next-hop forwarder node on a low delay route can be
determined by assigning higher relay priority to the candidate
forwarder nodes with lower EADs in OR. Simulation results show
that the proposed RLOR algorithm can achieve a proper tradeoff
between the transmission reliability and latency, so as to support
the low-delay transmission of wireless video streams with high
received video quality.

I. INTRODUCTION

In recent years, real-time video streaming services, such

as video conference, video surveillance, and live broadcast,

have increasingly become important applications. Meanwhile,

multi-hop wireless networks, e.g., wireless mesh networks

(WMNs) [1], wireless sensor networks (WSNs) [2], and

mobile ad hoc networks (MANETs), have attracted much

attention for future mobile communication systems due to

The work has been partially supported by NSFC under Grants 61501293,
61529101, 61425011, 61622112 and 61472234, the Program of Shanghai A-
cademic Research Leader under Grant 17XD1401900, the China Postdoctoral
Science Foundation under Grants 2016T90372 and 2015M570365, and the
China Scholarship Council.

their ease of deployment, low infrastructure cost, and high

flexibility of multi-hop and multi-path topologies. However,

there are still significant challenges for live video streams

over multi-hop wireless networks. On the one hand, live video

streaming has stringent requirements on the transmission. For

example, video contains massive data and requires a large

bandwidth consumption to guarantee an acceptable viewing

quality. Besides, unlike other media objects (audio, image,

etc.), the transmission of video is more prone to the packet loss

due to the encoding/decoding dependency among consecutive

video packets. In addition, there also exists a low end-to-end

delay constraint, since video packets that arrive at the decoder

too late to be decoded before the scheduled display time are

useless and considered lost. On the other hand, the inherent

temporal variation and error prone properties of wireless

channels usually incur high packet loss and high latency to

the video transmission, which greatly degrades the received

video quality. Therefore, it is interesting yet challenging to

design an appropriate routing scheme for live video streaming

over multi-hop wireless networks that enables reliable and

low-delay transmission.

Traditional wireless routing protocols, such as ad hoc on-

demand distance vector (AODV) [3] and optimized link state

routing (OLSR) [4], usually pre-select an optimized route

before transmission starts. These protocols actually inherit

some path computation methods that are initially conceived for

wired networks and adapted to meet the specific requirements

of wireless networks. Nevertheless, the unreliable and time-

varying nature of wireless medium significantly impairs their

performance, resulting in substantial retransmission overhead.

Opportunistic routing (OR), on the contrary, takes advantage

of the broadcast nature of the wireless medium, regarding

the wireless shared channel as an opportunity rather than a

limitation. Instead of selecting a fixed next-hop relay node in

advance, in OR, a node broadcasts a data packet to multiple

neighbors and determines the next-hop forwarder on-the-fly

among the nodes that successfully receive this packet based

on their relay priority.

Biswas et al. [5] design and implement ExOR, the original

978-1-5090-3649-3/17/$31.00 c©2017 IEEE

OR protocol, which deals with the wireless packet losses and

improves the throughput by a factor of two to four in multi-

hop wireless networks compared to single-path routing. The

metric used to select and prioritize relay nodes is extremely

critical in opportunistic routing, and greatly affects the routing

performance. As revealed by [6], commonly used metrics are

based on the geographical distance or link quality, including

the expected one-hop throughput (EOT) [7], the expected

transmission count (ETX) [8] and the expected anypath trans-

mission count (EAX) [9]. By adopting these metrics, most

of the existing OR schemes are designed either to increase

the overall network throughput, or to decrease the number of

retransmission attempts (i.e., to increase the reliability).

Besides throughput/reliability, the end-to-end delay of a

video packet is another important measure affecting the overall

performance of the live video streaming services. However,

to the best of our knowledge, studies to date have seldom

taken this factor into account to minimize the total end-to-end

delay in OR. In [10], a video-aware multicast opportunistic

routing protocol is proposed by extending the network coding-

based OR method, MORE [11]. However, it does not fit a

more complicated scenario where multiple coexisting flows

are competing for the shared network resource and the load

balancing becomes an imperative problem. When multiple

video flows are disseminated over wireless networks, the

unavoidable network congestion will incur a long queuing

delay and potential buffer overflow, which degrades the video

quality sharply. In practice, the network congestion conditions

vary with traffic pattern generated randomly by users, which

requires each node to actively learn the dynamic change of

the network based only on the local communication. To this

end, Boyan et al. [12] propose the Q-routing algorithm, the

first work to apply reinforcement learning (RL) in the routing

protocol design for finding the minimum delay path in wired

networks. Based on Q-routing, a QoE-aware dual RL routing

strategy is designed in [13] to dynamically adjust the routes

for different multimedia service flows. However, the dilemma

between exploration and exploitation becomes more prominent

when applying the RL algorithm to the wireless routing

protocol, since the frequent exploration phases required to

capture the dynamic network changes will result in a large

amount of probe packet overhead that is not affordable by the

limited wireless resource.

To address the above issues, we propose a reinforcement

learning-based opportunistic routing (RLOR) scheme for live

video streaming over multi-hop wireless networks, by utilizing

the broadcast nature of OR and integrating the periodical

probe packets in the exploration phase of RL into the hop-

by-hop ACK messages. The proposed RLOR scheme can

simultaneously capture the wireless link variation over time

and dynamically detect the network congestion to achieve low

delay transmission for wireless video streaming. Specifically,

we design a new path-cost metric called the expected anypath

delay (EAD), which is defined as the estimated end-to-end

delay of a packet between the current relay node and the des-

tination node. Then, each node utilizes the acknowledgment

(ACK) message that piggybacks the EADs of its neighboring

nodes to independently update its own EAD based on RL

algorithm. As a result, the low delay routes can be learned by

dynamically updating the EAD of each node, and by choosing

the appropriate candidate forwarder set and the relay priority

of each candidate forwarder according to the learned EADs.

Moreover, the learning is continual and online using only local

information. The proposed scheme is therefore able to adapt

well in time-varying wireless networks. We conduct extensive

experiments on the discrete event simulator NS-3 [14]. The

simulation results show that the proposed RLOR algorithm can

achieve a lower end-to-end delay for video packet transmission

over multi-hop wireless networks while the video viewing

quality is still higher than existing schemes, which is suitable

for live video streaming applications.

The remainder of the paper is organized as follows. In

Section II, we introduce the system model and the basic

module of OR. In Section III, we design a new path-cost

metric called EAD and develop a RLOR algorithm. Section IV

presents our experimental configuration and simulation results.

Finally, concluding remarks are given in Section V.

II. SYSTEM MODEL

A. Network Model and Notations

As illustrated in Fig. 1, we model the multi-hop wireless

network as a graph G = (V, E), where V denotes the set of

nodes and E is the set of wireless links. In accordance with

the packet transmission, we assume that the time is slotted

and indexed by t ∈ {0, 1, 2, · · · }. Within each time slot t,
a complete packet broadcasting and feedback procedure are

accomplished between the sender node i ∈ V and the ordered

candidate forwarder set (CFS) of i, denoted by Fi(t). The

CFS Fi(t) comprises the neighboring nodes of i that could

further forward the packet to destination and is ranked in a

descending order of their relay priority. The set of wireless

links between node i and its CFS Fi(t) then constitutes a

hyperlink (i, Fi(t)) = {(i, nj) ∈ E|∀nj ∈ Fi(t)}. Since

wireless channels experience random packet losses due to

fading, shadowing and interference, a packet might need mul-

tiple transmission attempts until the successful delivery over

a wireless link. Accordingly, we denote by pi,nj the delivery

probability of wireless link (i, nj) ∈ E . Thus, 1/pi,nj repre-

sents the number of expected transmissions for a successful

packet delivery from i to nj , i.e., the ETX over the link (i, nj).
In practice, each node i can use the ACK messages received

from node nj to estimate pi,nj
. For the hyperlink (i, Fi(t)),

we denote by pi,Fi(t) the hyperlink delivery probability, which

is the probability that a packet transmitted from node i is

successfully received by at least one of the nodes in its CFS

Fi(t). With the assumption of independent deliveries, pi,Fi(t)

is formulated as

pi,Fi(t) = 1−
∏

nj∈Fi(t)

(1− pi,nj). (1)

n11n10n9

n8n7n6
(i)n5

n4n3n2n1

n12

��������	
��

Destination d

Basic module
of OR

Fig. 1. Illustration of live video streaming over a multi-hop wireless network.

Likewise, 1/pi,Fi(t) refers to the expected number of trans-

missions for a successful packet delivery from the node i to

the CFS Fi(t).

B. Basic Module of Opportunistic Routing

In traditional wireless routing, each node pre-computes the

minimum cost path to the destination, and then forwards to

a fixed next-hop node all packets that are targeted to the

destination. Therefore, the path diversity is ignored and under-

utilized. If a transmission fails, the sender node needs to

retransmit the same packet to the fixed relay node even though

other nodes may have overheard it, thereby failing to exploit

the broadcast nature. In contrast, OR determines the next-hop

relay node for a packet on the fly, with a packet forwarding

process comprising the following three steps, as illustrated in

Fig. 1.

1) Candidate forwarder set (CFS) selection: Sender node

i compares at each time slot t its transmission cost (e.g., EAD,

ETX, EAX) with its neighbors, and then selects the adjacent

nodes with lower cost to constitute its CFS Fi(t). The nodes

in Fi(t) are further ranked in a descending order of their relay

priority, with a lower cost indicating a higher relay priority.

For example, here we have the CFS Fi(t) = {n7, n10} if

we assume that EADd
n7
(t) < EADd

n10
(t) < EADd

i (t) <
EADd

n2
(t) < EADd

n5
(t). 2) Data broadcast: The sender

node appends the ranked list of the CFS Fi(t) into the packet

and then broadcasts this packet. 3) Forwarder coordination:
If multiple nodes receive this packet, the nodes out of Fi(t)
discard this packet directly. The nodes that are within Fi(t)
and receive this packet successfully will then relay the packet

based on the order of relay priority. To avoid duplicated

transmission, we specify that a node in Fi(t) only forwards

a packet when it successfully receives the packet and all the

nodes with higher relay priority fail to do so.

In this paper, the forwarder coordination is practically

implemented by the acknowledgement (ACK) messages and

relay node (RN) messages, as follows. At each time slot t,
sender node i broadcasts a data packet appended with the CFS.

Then, all nodes in the CFS that have successfully received

this packet send an ACK message back to the node i. After

receiving the ACK messages, the node i broadcasts a RN

message to announce which candidate node actually forward

this packet. If there is no node in the CFS receiving this

packet, the node i will retransmit this packet until at least

one of its neighboring nodes within the CFS receives it or the

retransmission count exceeds the upper limit. This procedure

is repeated on each relay node traversed by this packet until

it reaches the destination. Besides, we assume that the ACK

and RN messages are transmitted without error, and that due to

the packet size difference, their transmission time is negligible

compared to the data packet transmission delay.

III. REINFORCEMENT LEARNING BASED OPPORTUNISTIC

ROUTING

A. Path-cost Metric

The metric of path-cost significantly influences the choice of

the relay nodes in the CFS, and therefore impacts the ultimate

network performance. Considering that delay is the critical

factor for live video transmission, we propose a novel path-cost

metric called the expected anypath delay (EAD) to estimate

the total delivery time of a packet sent from the current node

to a given destination. In general, EAD consists of three delay

components, namely, the queue delay at the current node,

the expected one-hop transmission delay, and the expected

delivery delay on the remaining path. The EAD of each node

reflects the congestion level and delivery ability of the current

node, as well as the corresponding measure of its relay node

iteratively.

We denote by qi(t) the instant queuing delay for node i at

time slot t, and adopt the moving average method to estimate

the current waiting time Qi(t) of a packet in the queue of

node i at MAC layer, based on the previous queueing delay:

Qi(t) =

∑M−1
k=0 qi(t − k)

M
, (2)

where M is the size of the sliding window.

Furthermore, we define the expected one-hop transmission

delay Ti,Fi(t)(t) to estimate the time spent for a packet to be

successfully transmitted from sender node i to at least one

node in its CFS Fi(t):

Ti,Fi(t)(t) =
1

pi,Fi(t)
× S

R
, (3)

where pi,Fi(t) is the delivery probability of the hyperlink

(i, Fi(t)), S and R are the size of the packet in bits and the

data transmission rate in bps, respectively. The ratio S/R then

indicates the time of a single transmission over the hyperlink

(i, Fi(t)). Here, the definition of Ti,Fi(t)(t) is a generalization

of the expected transmission time (ETT) [15] in the traditional

wireless routing, by substituting a single next-hop node with

a CFS Fi(t).

The expected delivery delay on the remaining path can be

interpreted as the EAD of the CFS Fi(t) to the destination.

It can be calculated by a weighted sum of the EAD of the

nodes in the CFS Fi(t) = {f1(t), f2(t), · · · , fr(t)}, where

fj(t) represents the node with the j-th highest relay priority,

and r denotes the total number of candidate relay nodes in the

CFS Fi(t). Thus, we can define the estimated delay from the

CFS Fi(t) to the destination node d as

EADd
Fi(t)

(t) =
∑

fj(t)∈ Fi(t)

ωj · EADd
fj(t)

(t), (4)

where the weight ωj represents the probability of the node

fj(t) being selected as the actual relaying node. This only

happens when node fj(t) successfully receives the packet and

none of nodes with a higher priority than fj(t) succeeds to

do so. Therefore, this probability can be formulated as

ωj =

pi,fj(t) ·
j−1∏
k=1

(1− pi,fk(t))

pi,Fi(t)
, (5)

with the denominator being the normalization constant. By

combining Eqs. (2)-(4), we can estimate the expected anypath

delay of node i to a given destination d at time slot t as

EADd
i (t) = Qi(t) + Ti,Fi(t)(t) + EADd

Fi(t)
(t). (6)

B. RLOR Algorithm Design

In OR, the selection of the CFS for a sender node based

on the EADs of its neighbors plays a key role in deter-

mining the actual next-hop forwarder of a packet and its

path to the destination. Therefore, the routing performance

is greatly affected by the estimation accuracy of the EAD of

each node. However, due to the time-varying characteristics

of wireless networks, these EADs change dynamically over

time. In addition, there is no “training signals” for evaluating

these EAD values and improving the routing policy until a

packet finally reaches the destination. To address the above

issues, reinforcement learning (RL) provides a framework for

each node to quickly learn a good estimation of its EAD

by using only local information through the interaction with

its neighbors. This is achieved within the basic data packet

broadcast and ACK feedback process of OR. Specifically, after

transmitting a packet, the sender node will use the received

ACK messages containing the EADs of the nodes in its CFS

to update the estimate of its own EAD based on Eq. (6), which

is denoted as ̂EADd
i (t). It then runs the RL update procedure

to revise its EAD value based on this estimate:

EADd
i (t)=EADd

i (t−1)+μ(̂EADd
i (t)−EADd

i (t−1)), (7)

where parameter μ is the learning rate. The reinforcemen-

t learning-based opportunistic routing (RLOR) algorithm is

proposed in Algorithm 1, and explained in the following.

At time slot t = 0, we assume that no data traffic exists

in the network. Therefore, in the initialization step, we set

the queuing delay in all nodes to zero. Then, each node

broadcasts some probe packets to measure the link delivery

probability. After that, we employ the anypath Bellman-Ford

(ABF) algorithm in [16] with the EAD metric to initialize

the network. Since any path in the network cannot exceed

|V| − 1 hops, the ABF algorithm consists of at most |V| − 1
rounds. At each round, each node i ∈ V gets its neighbors

using the GetNeighbors(i) function, stores them to the set C,

Algorithm 1 RLOR scheme.

1: Initialization step: (at t = 0, for destination d)
(1) EADd

d(0)← 0
(2) for each node i ∈ V \ {d} do

EADd
i (0)←∞, Fi(0)← ∅, Qi(0)← 0

(3) for m← 1 to |V| − 1
for each node i ∈ V do

J ← ∅, C ← GetNeighbors(i)
while C �= ∅ do

j ← ExtractMin(C), J ← J ∪ {j}
if EADd

j (0) < EADd
i (0) then

Fi(0)← J
Compute EADd

i (0) based on Eq. (6)
2: Iteration step: (at t = 1, 2, . . . , for destination d)
for each node i ∈ V \ {d} do

(1) Node i broadcasts a packet appended with Fi(t− 1).
(2) H ← GetAckNodes(i)
(3) J ← ∅

for each neighbor nj ∈ Fi(t− 1) do
if nj /∈ H then

EADd
nj
(t)← EADd

nj
(t− 1)

if EADd
nj
(t) < EADd

i (t− 1) then
J ← J ∪ {nj}

Fi(t)← Descend(J)

(4) Compute the estimated ̂EADd
i (t) based on Eq. (6)

(5) Update EADd
i (t) base on the RL update Eq. (7)

and sets J as the temporary CFS. The ExtractMin(i) function

extracts the neighboring node of i with the minimum EAD to

destination d from C at each loop, which is denoted as j and

added into J . Next, we check whether EADd
j (0) is smaller

than EADd
i (0). If yes, we update Fi(0) (the formal CFS) by

J , and then compute EADd
i (0) based on Eq. (6). After the

update of EADs of all nodes, each node announces its new

EAD to the neighbors, and then goes to the next round.

At time slot t = 1, 2, . . . , multiple flows are generated

between multiple source-destination pairs. The algorithm then

goes to the iteration step. Here, we assume that the node i
receives a data packet to be delivered to the destination node

d at time slot t. First, node i broadcasts the packet appended

with the CFS Fi(t−1), which is selected and prioritized based

on the EADs of its neighbors to the destination d at last time

slot t − 1. Nodes whose EADs are less than EADd
i (t − 1)

can be listed in the CFS with a descending order of the relay

priority. Next, nodes that are within Fi(t−1) and successfully

receive the packet send an ACK message to node i, and

piggyback their EADs. Then, the node i announces which

node is responsible for actually forwarding the packet by a RN

message. We apply the GetAckNodes(i) function to record the

nodes within the CFS Fi(t−1) that send back ACK messages

containing their EADs to i and place them in the set H. We

can then update the CFS Fi(t) as follows. Likewise, J still

denotes the temporary CFS. For nodes that do not send the

ACK messages to node i at time slot t, we still use their EADs

at last slot time t−1 to represent the current EAD values. Here,

we add nj ∈ Fi(t − 1) into J only if EADd
nj
(t) is smaller

than EADd
i (t−1). Then, we can get the formal CFS Fi(t) by

using the Descend(J) function to sort J in a descending order

of the relay priority. Correspondingly, the node i can obtain

an EAD estimate ̂EADd
i (t) according to Eq. (6), and then

use this estimate to update its EAD based on the RL update

procedure in Eq. (7).

IV. EXPERIMENTS

A. Settings

The discrete event simulator NS-3 [14] is used to simulate

the wireless video streaming scenario with other multiple flows

co-existing in the network. We compare the routing perfor-

mance of the proposed RLOR algorithm with two existing

OR algorithms using EAX (EAX-OR [9]) and ETX (ETX-

OR [5]), and the traditional RL-based single-path routing

method (RL-TR [13]), respectively. Nodes in the wireless

network are located in an approximate 3 × 4 grid where

the distance between each two nodes is randomly distributed

in the range of [180, 185] m, as shown in Fig. 1. Each

node has a random movement within a 6 m-by-6 m square

area around its original location, resulting in a time-varying

delivery probability of each wireless link. We take the IEEE

802.11b standard in ad-hoc mode as the communication spec-

ification. The data transmission rate of each wireless link is

set to 11 Mbps without automatic rate control. Besides, we

devise an appropriate channel assignment and the receiving

gain to avoid the interference among adjacent nodes. Thus,

our implementation is capable of sending and receiving data

packets simultaneously for each node. In addition, we employ

the log-distance propagation loss model to simulate the fading

of signal on the wireless channel. The path loss is defined

as L = L0 + 10n log(dist
dist0

), where dist is the distance

between the transmitter and receiver, n = 3 is the path

loss exponent, dist0 = 1 m and L0 = 40.046 dB are the

reference distance and the path loss at that reference distance,

respectively. The maximum transmission power level is set to

20 dBm (100 mW). To estimate the packet loss, we utilize the

NistErrorRateModel in the NS-3. We adopt the UDP format

with 1040-byte payload in every data packet and limit the

buffer size of each node to 300 packets.

Without loss of generality, we assume that there is one

video flow transmitting from nodes n1 to n12. Two test video

sequences (Tractor and Sunflower) with 1080p resolution

(1920× 1080), available at [17], are selected as the candidate

video flows for transmission. These two videos are encoded at

a frame rate of 60 fps, with an IPPPP Group of Picture (GOP)

coding structure that includes one I-frame and 29 P-frames in

one GOP. In addition, we select three source-destination pairs,

n6 → n12, n5 → n11, n2 → n8, respectively, to generate

background data traffic at a fixed source rate. To transmit

a video flow, we sequentially send the corresponding data

packets at the source node, by letting the sending rate of data

packets equal to the source rate of that video flow. The detailed

simulation parameters are shown in Table I.

B. Results

Fig. 2(a) shows the average end-to-end delay of each packet

versus the average throughput of the destination node n12

TABLE I
SIMULATION SETUP

Parameter Value

Simulator NS-3.26 [14]
Topology 3× 4 grid
Distance between nodes [180, 185] m
Nodes communication 802.11b
Propagation model LogDistancePropagationLossModel
Error rate model NistErrorRateModel
Remote station manager ConstantRateWifiManager
WiFi data rate 11 Mbps
Source rate of the video flow 5 Mbps (unless stated otherwise)
Source rate of the other flows 2 Mbps
Transmission power 20 dBm (unless stated otherwise)
Packet size 1040 bytes
Buffer size 300 packets
Learning rate μ 0.5
Test video sequence Tractor (or Sunflower)
Frame rate 60 fps
Resolution 1080p (1920× 1080)
GOP coding structure IPPPP, 30 frames

by varying the source rate of the video flow from 1 Mbps

to 5 Mbps, when the transmission power of each node is

set to 20 dBm. It can be seen that to achieve the same

average throughput, the average end-to-end delay achieved by

the other three competitor algorithms is much larger than the

proposed RLOR algorithm. And such delay gap becomes more

significant if the user in node n12 requests a higher video

source rate. This is because the other two OR approaches

prefer to select the most reliable transmission path and neglect

the possible congestion at some popular nodes. In comparison,

the RLOR algorithm is able to learn the network congestion in

real time by dynamically updating the EAD of each node, and

then to optimize the relay priority of the candidate forwarder

nodes. Sometimes, for the low-delay transmission of video

streaming, it is more appropriate to select the path with less

congestion even at a cost of inferior link delivery ability.

In other words, there exists a tradeoff between reducing the

retransmission overhead and avoiding the queuing delay, and

our algorithm is capable of balancing these two factors. We

illustrate in Fig. 2(b) the case when the transmission power

level is reduced to 19.5 dBm, where the performance of the

RL-TR algorithm becomes the worst. This is because the RL-

TR is a single path routing algorithm. When the link delivery

probability drops with the decrease of the transmission power,

there will be more packet losses and retransmission overheads

on the fixed single path, which thereby results in a very long

transmission delay.

In Fig. 3, we measure the instant delivery delay of packets

and the throughput between the node pair n1 → n12 with a

time window of 0.2 s, when the video source rate is set to 5

Mbps. It can be seen that the delivery delay of packets in the

other three methods fluctuate greatly. Especially, the ETX-OR

algorithm presents a large delay at t=3 s and 6 s. The reason

is that ETX is essentially a single-path metric and ignores to

exploit the path diversity. In contrast, a stable and low end-

to-end delay can be guaranteed for each video packet by the

proposed RLOR algorithm, since it can balance the data traffic

1 2 3 4 5
Throughput (Mbps)

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
A

ve
ra

ge
 e

nd
-to

-e
nd

 d
el

ay
 (

s) Transmission power = 20 dBm

EAX-OR
ETX-OR
RL-OR
RL-TR

(a)

1 2 3 4 5
Throughput (Mbps)

0

0.2

0.4

0.6

0.8

A
ve

ra
ge

 e
nd

-to
-e

nd
 d

el
ay

 (
s) Transmission power = 19.5 dBm

EAX-OR
ETX-OR
RL-OR
RL-TR

(b)

Fig. 2. Average end-to-end delay vs. throughput when the transmission power
is set to (a) 20 dBm and (b) 19.5 dBm.

0 2 4 6 8 10

Simulation time (s)

0

0.02

0.04

0.06

0.08

0.1

0.12

E
nd

-to
-e

nd
 d

el
ay

 (s
)

EAX-OR
ETX-OR
RL-OR
RL-TR

(a)

0 2 4 6 8 10

Simulation time (s)

4

4.5

5

5.5

6

6.5

Th
ro

ug
hp

ut
 (M

bp
s) EAX-OR

ETX-OR
RL-OR
RL-TR

(b)

Fig. 3. End-to-end delay and throughput over simulation time.

over all nodes within the network.

Fig. 4 shows the decoded video quality in Y-PSNR of the

first 120 frames of Tractor and Sunflower sequences achieved

by different algorithms under two playback deadline settings

of 66 ms and 76 ms. Here, a video packet is considered lost if it

arrives later than the given playback deadline. As the playback

deadline increases, the delay constraint on each packet is re-

laxed, thereby leading to a better overall video quality for each

algorithm. Overall, the proposed RLOR algorithm outperforms

the other three algorithms when transmitting different videos,

achieving both higher average Y-PSNR and smaller video

quality variation over time.

V. CONCLUSIONS

In this paper, we proposed a reinforcement learning-based

opportunistic routing (RLOR) scheme for live video streaming

over multi-hop wireless networks. Specially, we designed a

new path-cost metric, the expected anypath delay (EAD),

to estimate the end-to-end delay of a packet between the

current sending node and the destination. We then applied

the proposed RLOR algorithm to efficiently learn the EAD

of each node dynamically through reinforcement learning

update procedure and to opportunistically forward the packets

among wireless nodes based on their EADs. The simulation

results have shown that the proposed RLOR algorithm is

capable of balancing the network traffic, such that the low-

delay requirement of the live video streaming over multi-

hop wireless networks is guaranteed with better average video

viewing quality and smaller temporal quality variation.

REFERENCES

[1] I. F. Akyildiz and X. Wang, “A survey on wireless mesh networks,” IEEE
Communications Magazine, vol. 43, no. 9, pp. S23–S30, Sep. 2005.

0 20 40 60 80 100 120
Frame index

10

15

20

25

30

35

D
ec

od
in

g
Y

-P
S

N
R

 (d
B

)

Tractor, playback deadline = 66 ms

EAX-OR
ETX-OR
RL-OR
RL-TR

(a)

0 20 40 60 80 100 120
Frame index

10

15

20

25

30

35

D
ec

od
in

g
Y

-P
S

N
R

 (d
B

)

Tractor, playback deadline = 76 ms

EAX-OR
ETX-OR
RL-OR
RL-TR

(b)

0 20 40 60 80 100 120
Frame index

20

30

40

50

60

D
ec

od
in

g
Y

-P
S

N
R

 (d
B

)

Sunflower, playback deadline = 66 ms
EAX-OR
ETX-OR
RL-OR
RL-TR

(a)

0 20 40 60 80 100 120
Frame index

20

30

40

50

60

D
ec

od
in

g
Y

-P
S

N
R

 (d
B

)

Sunflower, playback deadline = 76 ms
EAX-OR
ETX-OR
RL-OR
RL-TR

(b)

Fig. 4. Frame-wise decoding Y-PSNR when the playback deadline is set to
(a) 66 ms and (b) 76 ms.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: A survey,” Computer Networks, vol. 38, no. 4, pp.
393–422, Mar. 2002.

[3] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc on-demand distance
vector (AODV) routing,” IETF RFC 3561, Jul. 2003.

[4] T. Clausen and P. Jacquet, “Optimized link state routing protocol
(OLSR),” IETF RFC 3626, Oct. 2003.

[5] S. Biswas and R. Morris, “ExOR: Opportunistic multi-hop routing for
wireless networks,” in Proc. ACM SIGCOMM, 2005, pp. 133–144.

[6] N. Chakchouk, “A survey on opportunistic routing in wireless commu-
nication networks,” IEEE Communications Surveys Tutorials, vol. 17,
no. 4, pp. 2214–2241, Fourthquarter 2015.

[7] K. Zeng, W. Lou, J. Yang, and D. R. B. Iii, “On throughput efficiency of
geographic opportunistic routing in multihop wireless networks,” Mobile
Networks and Applications, vol. 12, no. 5, pp. 347–357, Dec. 2007.

[8] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-
throughput path metric for multi-hop wireless routing,” in Proc. ACM
MobiCom, 2003, pp. 134–146.

[9] H. Dubois-Ferriere, M. Grossglauser, and M. Vetterli, “Valuable detours:
Least-cost anypath routing,” IEEE/ACM Transactions on Networking,
vol. 19, no. 2, pp. 333–346, Apr. 2011.

[10] K. Choumas, I. Syrigos, T. Korakis, and L. Tassiulas, “Video aware
multicast opportunistic routing over 802.11 two-hop mesh networks,”
IEEE Transactions on Vehicular Technology, vol. PP, no. 99, pp. 1–1,
2017.

[11] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading structure
for randomness in wireless opportunistic routing,” in Proc. ACM
SIGCOMM, 2007, pp. 169–180.

[12] J. A. Boyan and M. L. Littman, “Packet routing in dynamically changing
networks: a reinforcement learning approach,” Advances in Neural
Information Processing Systems, vol. 6, pp. 671–678, 1994.

[13] R. Matos, N. Coutinho, C. Marques, S. Sargento, J. Chakareski, and
A. Kassler, “Quality of experience-based routing in multi-service
wireless mesh networks,” in Proc. IEEE ICC, 2012, pp. 7060–7065.

[14] “Ns3 project (release ns-3.26). [online]. Available: http-
s://www.nsnam.org/,” 2016.

[15] R. Draves, J. Padhye, and B. Zill, “Routing in multi-radio, multi-hop
wireless mesh networks,” in Proc. ACM MobiCom, 2004, pp. 114–128.

[16] R. Laufer, H. Dubois-Ferriere, and L. Kleinrock, “Polynomial-time
algorithms for multirate anypath routing in wireless multihop networks,”
IEEE/ACM Transactions on Networking, vol. 20, no. 3, pp. 742–755,
Jun. 2012.

[17] “Xiph.org video test media. [online]. Available:
http://media.xiph.org/video/derf/,” .

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

